If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=19.3t+-4.905t^2
We move all terms to the left:
0-(19.3t+-4.905t^2)=0
We add all the numbers together, and all the variables
-(19.3t+-4.905t^2)=0
We use the square of the difference formula
-(19.3t-4.905t^2)=0
We get rid of parentheses
4.905t^2-19.3t=0
a = 4.905; b = -19.3; c = 0;
Δ = b2-4ac
Δ = -19.32-4·4.905·0
Δ = 372.49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19.3)-\sqrt{372.49}}{2*4.905}=\frac{19.3-\sqrt{372.49}}{9.81} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19.3)+\sqrt{372.49}}{2*4.905}=\frac{19.3+\sqrt{372.49}}{9.81} $
| 3x+4+9x+2=2 | | 3(x+40)+9=21 | | -7w+2=2(w-1) | | 8.4/4.8=6.3/k | | 7+-10z=57 | | 11x+8=16x-8 | | 400=3x-20 | | -2(-12-6k)=-9(15k) | | 19t+5t^2=0 | | 5y+12=9y-2 | | -1=k+7/9 | | -48-x=39 | | -m3/2+9=0 | | 100-6=0.5x | | 3/4(8x-4)=7+2 | | 6+m-m=-2 | | 5(3x-2)=4(2x1) | | -5/6z-3=47 | | 20/3x-5=5/x-2 | | 8(y-1)=3y=6(2y-6) | | 15=-11y | | 30)-7(5-7k)=161 | | 8n−4=6n+6 | | 7=-5/6z=23 | | Y+9+4y=180 | | 5x-11+6x-7=180 | | 12=n3 | | 2x^{3}-18x^{2}+22x+42=0 | | 4+3y=18-5y+7y+2 | | 1n=8n-3 | | 2x−18=5 | | 1,6-x=32 |